SIDDARTHA INSTITUTE OF SCIENCE AND TECHNOLOGY::PUTTUR (AUTONOMOUS)

QUESTIONBANK (DESCRIPTIVE)

Subject with Code: Engineering Chemistry (23HS0803) **Course & Branch**: B.Tech.; ME & CIV

Year & Sem: I Year & I Sem Regulation: R23

UNIT – I WATER TECHNOLOGY

1	Define the following	57 435 60 43	54.03.53
	a) Temporary hardness b) Permanent hardness c) EDTA d) Reverse osmosis	[L1][CO1]	[10M]
	e) Scale and Sludge		
2	Describe the estimation of hardness by EDTA method.	[L3][CO1]	[10M]
3	a) Define hardness. Distinguish between hard water and soft water?	[L3][CO1]	[4M]
	b) How do you estimate dissolved oxygen in water by Winkler's method.	[L4][CO1]	[6M]
4	a) Explain about the priming and foaming?	[L2][CO1]	[5M]
	b) Explain the process of scale and sludge formation in boilers.	[L2][CO1]	[5M]
5	a) Explain in detail about the Boiler corrosion.	[L2][CO1]	[5M]
	b) What are the specifications of the drinking water BIS and WHO Standards?	[L1][CO1]	[5M]
6	Explain with a neat sketch the various steps involved in Industrial Water	[L2][CO1]	[10M]
	Treatment.		[TOWI]
7	a) What is Caustic embrittlement? Explain in detail.	[L1][CO1]	[4M]
	b) Discuss different types of internal treatments of industrial water.	[L1][CO1]	[6M]
8	Briefly explain about any three boiler troubles and their treatment.	[L2][CO1]	[10M]
9	a) Describe the Ion exchange process for demineralization of water?	[L3][CO1]	[6M]
	b) What are the advantages and disadvantages of Ion exchange process?	[L1][CO1]	[4M]
10	a) Explain about demineralization of brackish water by Reverse Osmosis.	[L2][CO1]	[5M]
	b) Explain about desalination of brackish water by Electro dialysis.	[L2][CO1]	[5M]
11	Write short notes on:		
	a) What are the units to express hardness?	[L1][CO1]	[5M]
	b) Write the specifications of Potable water.	[L1][CO1]	[5M]

Course Code: 23HS0803

UNIT - II ELECTROCHEMISTRY AND APPLICATIONS

1	Write the following		
	a) Primary and Secondary battery b) Corrosion c) Single electrode potential d)	[L1][CO2]	[10M]
	Fuel Cell e) Pilling Bed worth ratio		
2	a) What is Electrochemical cell? Explain the construction & working principle of		
	Electrochemical cell with neat diagram.	[L1][CO2]	[6M]
	b) Calculate the single electrode potential of zinc in 0.05 M ZnSO4 solution at	II 31[CO2]	[4]
	25 ${}^{0}\text{C. } \text{E}^{0}\text{Zn/Zn}^{2+} = -0.763\text{V.}$	[L3][CO2]	[4M]
3	Derive the Nernst equation for a single electrode potential and write its	[L2][CO2]	[10M]
	applications.	[22][882]	
4	a) Write a note on Zinc-air battery	[L1][CO2]	[5M]
	b) Explain the Construction and working of NICAD battery.	[L2][CO2]	[5M]
5	a) Write a note on Lithium-Ion rechargeable cell.	[L1][CO2]	[5M]
	b) Describe the Construction and Working of Hydrogen-Oxygen Fuel cell.	[L3][CO2]	[5M]
6	Explain about electrochemical theory of corrosion.	[L3][CO2]	[10M]
7	Explain the process of		
	a) Galvanic corrosion	[L3][CO2]	[5M]
	b) Oxidation corrosion	[L3][CO2]	[5M]
8	Explain about Chemical theory of corrosion	[L2][CO2]	[10M]
9	a) Write a note on sacrificial anodic protection?	[L1][CO2]	[5M]
	b) Define the importance of the Impressed Current Cathodic protection?	[L1][CO2]	[5M]
10	a) What is Electroplating? Explain electroplating of Nickel and Copper?	[L2][CO2]	[5M]
	b) What is Differential Aeration cell corrosion? Give the suitable Examples.	[L1][CO2]	[5M]
11	Explain various factors influencing the rate of corrosion.	[L3][CO2]	[10M]

Course Code: 23HS0803

UNIT-III POLYMERS AND FUEL CHEMISTRY

1	Define the following		
	a) Polymerization b) Octane number c) Cetane number d) Monomer	[L1][CO3]	[10M]
	e) Biofuel		
2	a) What is functionality of monomer?	[L1][CO3]	[5M]
	b) Write about synthesis, properties and applications of Polystyrene.	[L1][CO3]	[5M]
3	a) Explain the chain growth and step growth of polymerization with examples.	[L1][CO3]	[5M]
3	b) Discuss the synthesis, properties and applications of Nylon – 6, 6.	[L1][CO3]	[5M]
4	Explain the following mechanism of Addition polymerization.		
	a) Free-radical addition polymerization	[L2][CO3]	[5M]
	b) Cationic addition polymerization	[L2][CO3]	[5M]
5	a) Distinguish between Thermoplastics and Thermosetting plastics.	[L4][CO3]	[5M]
	b) Describe the preparation, properties and uses of Bakelite.	[L3][CO3]	[5M]
6	Write the preparation, properties and applications of the following polymers		
	a) Buna-S rubber.	[L2][CO3]	[4M]
	b) Buna-N rubber.	[L2][CO3]	[3M]
	c) Thiokol rubber.	[L2][CO3]	[3M]
7	a) Write about anionic addition polymerization.	[L2][CO3]	[5M]
	b) Describe the synthesis, properties and applications of Polyvinyl Chloride.	[L2][CO3]	[5M]
8	a) Explain the Proximate analysis of coal with its significance.	[L2][CO4]	[5M]
	b) Discuss the ultimate analysis of coal with its significance.	[L2][CO4]	[5M]
9	Describe the fractional distillation of petroleum.	[L3][CO4]	[10M]
10	a) What is significance of the Fuels for IC Engines?	[L1][CO4]	[5M]
	b) Write a note on Octane value and Cetane value.	[L1][CO4]	[5M]
11	a) What is the significance of propane and methanol fuels?	[L1][CO4]	[5M]
	b) What is the importance of the Ethanol and Biofuel?	[L1][CO4]	[5M]

Course Code: 23HS0803

UNIT - IV MODERN ENGINEERING MATERIALS

1	Define the following		
	a) Composite b) Refractories c) Lubricant d) Viscosity e) Cement	[L1][CO5]	[10M]
2	a) Classify the composites materials.	[L1][CO5]	[5M]
	b) Explain factors affecting the refractory materials.	[L1][CO5]	[5M]
3	a) Give the classification of refractories with examples.	[L1][CO5]	[5M]
	b) Write a note on properties of the refractor materials.	[L1][CO5]	[5M]
4	a) Determine the viscosity of lubricating oil by Redwood Viscometer.	[L2][CO5]	[6M]
4	b) Discuss the applications of refractory materials.	[L2][CO5]	[4M]
5	Write short notes on:		
	a) Flash and Fire point	[L1][CO5]	[5M]
	b) Cloud point and saponification	[L1][CO5]	[5M]
6	Write short note on following mechanism.		
	a) Hydrodynamic Lubrication	[L1][CO5]	[5M]
	b) Thick Film Lubrication	[L1][CO5]	[5M]
7	a) Give the classification and examples of the lubricants?	[L1][CO5]	[5M]
	b) Discuss the functions and properties of lubricating oils.	[L2][CO5]	[5M]
8	Explain in detailed about manufacture of Portland Cement?	[L2][CO5]	[10M]
9	a) Write about constituents of Portland cement.	[L1][CO5]	[5M]
	b) Explain in detail about setting and hardening of Portland cement?	[L2][CO5]	[5M]
10	a) Summarize the applications of lubricants.	[L1][CO5]	[5M]
	b) Discuss the properties of composite materials.	[L1][CO5]	[5M]
11	a) Write a note on Fiber and structural reinforced composite materials.	[L1][CO5]	[5M]
	b) Write a brief note on engineering applications of composite materials.	[L1][CO5]	[5M]

UNIT-V SURFACE CHEMISTRY AND NANOMATERIALS

1	Write the following		
	a) Colloids b) BET equation c) Micelle d) Nanomaterial e) Stabilizing agents	[L1][CO6]	[10M]
2	a) Discuss the synthesis of colloids by Braggs method.	[L1][CO6]	[5M]
	b) Write a note on Micelle formation.	[L1][CO6]	[5M]
3	Write a note on following	[L1][CO6]	[5M]
	a) Stabilization of colloids by stabilizing agents.b) Stabilization of nanomaterials by stabilizing agents.	[L1][CO6]	[5M]
4	Give an account of chemical and electrochemical methods of preparation of		[01/1]
-	nano metals.	[L1][CO6]	[10M]
5	a) Explain different types of Adsorptions of Isotherm	[L1][CO6]	[5M]
	b) Discuss the applications of nanomaterials in catalysis and medicine.	[L1][CO6]	[5M]
6	a) Explain about the stabilization of colloids by Solid-Gas Interface.	[L2][CO6]	[5M]
	b) Explain the preparation of Nano metal oxides by chemical and electrochemical	[L2][CO6]	[5M]
	methods		
7	Write short notes on		
	a) Types of Colloids	[L2][CO6]	[5M]
	b) Properties of Nonmetal & Nano metal Oxides	[L2][CO6]	[5M]
8	Summarize the applications of nanomaterials.	[L3][CO6]	[10M]
9	Discuss about the following		
	a) Freundlich adsorption isotherms	[L2][CO6]	[5M]
	b) Langmuir adsorption isotherms.	[L2][CO6]	[5M]
10	a) Explain the BET Equation	[L2][CO6]	[5M]
	b) Write the characteristics of colloids.	[L1][CO6]	[5M]
11	a) Write the applications of Colloids.	[L1][CO6]	[5M]
	b) Explain about the stabilization of colloids by Solid-Liquid Interface.	[L2][CO6]	[5M]